Please write clearly in	n block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

AS CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Tuesday 16 May 2023

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Morning

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
Section B				
TOTAL				

				Sectior	n A				
		A	nswer all	questions	s in this se	ection.			
0 1	This ques	tion is abo	out the ele	ements in	Period 3.				
		full electro	-	ration of tl	he elemer	nt in Perio	d 3 with t	he highes [.]	t
	iirst ionisa	ation energ	gy.						[1 mark]
-									
		equation, ir id ionisatio					e proces	s that occu	urs when
			Shenergy	or social	nis nicas	urcu.			[1 mark]
			0	Table		E		7	
Ionisation nu Ionisation er		1	2	3	4	5	6	7	8
kJ mol ⁻¹	leigy /	1000	2260	3390	4540	6990	8490	27 100	31700
	Identify th	e Period 3	3 element	-					
	-	e Period (our answe							[3 marks]
	Explain yo	our answe	er.						[3 marks]
	Explain yo Element		er.						
	Explain yo Element	our answe	er.						
	Explain yo Element	our answe	er.						
	Explain yo Element	our answe	er.						

02.1	This question is about the elements in Group 2. Describe the structure and bonding in magnesium.	Do not write outside the box
02.2	[2 marks] [2 marks] State the trend in the atomic radius of the elements down Group 2 from Mg to Ba Give a reason for this trend. [2 marks]	
	Trend Reason	
02.3	Give an equation, including state symbols, for the reaction of magnesium with steam. State two observations for this reaction. [3 marks] Equation	
	Observation 1 Observation 2	
	Question 2 continues on the next page	

Turn over ►

		Do not write
02.4	The sulfates of the elements in Group 2 from Mg to Ba have different solubilities.	outside the box
	State the formula of the least soluble of these sulfates.	
	Give a use for this sulfate. [2 marks]	
	Formula	
	Use	
02.5	A sample of strontium is made up of only three isotopes: ⁸⁶ Sr, ⁸⁷ Sr and ⁸⁸ Sr This sample contains 83.00% by mass of ⁸⁸ Sr This sample of strontium has A_r = 87.73	
	Calculate the percentage abundance of each of the other two isotopes in this sample. [4 marks]	
	% abundance ⁸⁷ Sr =	
	% abundance ⁸⁶ Sr =	

0 2 6

indigestion tablet.

Mg(OH)₂ is used as an antacid to treat indigestion.
 A student does an experiment to determine the percentage by mass of Mg(OH)₂ in an

40.0 cm³ of 0.200 mol dm⁻³ HCl (an excess) is added to 0.200 g of a powdered tablet. The mixture is swirled thoroughly. All of the Mg(OH)₂ reacts with HCl as shown.

 $Mg(OH)_2 + 2HCl \rightarrow MgCl_2 + 2H_2O$

The amount of HCl remaining after this reaction is determined by titration with 0.100 mol dm $^{-3}$ NaOH

29.25 cm³ of 0.100 mol dm⁻³ NaOH are needed.

Calculate the percentage by mass of Mg(OH)₂ in the indigestion tablet.

[6 marks]

19

		Do not write
0 3	A student uses this method to prepare a standard solution of sodium carbonate.	outside the box
	 Weigh a clean, dry, empty container on a balance that reads to 2 decimal places. Add about 2.5 g of solid sodium carbonate to the container. 	
	3. Tip the solid into a beaker.	
	4. Add approximately 100 cm ³ of distilled water to the beaker and stir until all the solid has dissolved.	
	 Pour the solution into a 250 cm³ volumetric flask. Add distilled water until the top of the meniscus is level with the graduation mark. 	
0 3.1	Suggest three improvements to this method. [3 marks]	
	1	
	2	
	3	
0 3 2	A different student uses the correct method to prepare 250 cm ³ of sodium carbonate solution in a volumetric flask. The uncertainty for the volumetric flask is ± 0.20 cm ³	
	Calculate the percentage uncertainty in the volume of this sodium carbonate solution.	
	[1 mark]	
	Percentage uncertainty	4

M is a Group 2 metal that forms the nitrate $M(NO_3)_2$ 0.320 g of $M(NO_3)_2$ is heated strongly and decomposes completely.

 $2 M(NO_3)_2(s) \rightarrow 2 MO(s) + 4 NO_2(g) + O_2(g)$

The mixture of gases formed has a volume of 225 cm³ at 450 °C and 101 000 Pa

Determine the M_r of **M**(NO₃)₂

Identify M.

The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

[5 marks]

*M*_r of **M**(NO₃)₂_____

Identity of **M**

Turn over ►

5

		Do not v outside
0 6	This question is about halogens and halide ions.	box
0 6.1	Explain why the electronegativity of the halogens decreases down the group. [2 mar	ks]
	Concentrated sulfuric acid reacts with solid sodium chloride and with solid sodium bromide.	
0 6.2	State one similarity in, and one difference between, these reactions. [2 mar	ks]
	Similarity	
	Difference	
0 6.3	Solid sodium iodide reacts with concentrated sulfuric acid to form hydrogen sulfide.	
	Give a half-equation to show the oxidation of iodide ions.	
	Give a half-equation to show the reduction of concentrated sulfuric acid to hydrogen sulfide.	
	Use your half-equations to deduce an overall equation for this reaction.	ko]
	[3 mar	ksj
	Half-equation 1	
	Holf equation 2	
	Half-equation 2	
	Half-equation 2	
	·	
	Half-equation 2	

IB/M/Jun23/7404/1

Mass of one mole of X _____

g

	A mixture of gases is analysed using TOF mass spectrometry. The mixture contains argon, carbon dioxide, nitrogen and oxygen. The mixture is ionised by electron impact.	Do not write outside the box
0 7.2	State the meaning of the term electron impact ionisation. [1 mark]	1
		-
07.3	Identify the ion formed from this mixture that reaches the detector last.	
	Justify your answer. [2 marks]	1
	Ion that reaches detector last	_
	Justification	-
		-
0 7.4	State how the ions are detected, and how the abundance of each ion is measured, in a TOF mass spectrometer. [2 marks]	1
	How ions are detected	-
	How abundance is measured	-
	Turn over for the next question	

Turn over ►

		Do not write
08	This question is about the equilibrium mixture formed when A and B react.	outside the box
	$A(aq) + 2B(aq) \rightleftharpoons C(aq)$ $\Delta H = -32 \text{ kJ mol}^{-1}$	
0 8.1	A solution containing 0.60 mol of A is added to a solution containing 0.60 mol of B . The amount of C formed at equilibrium is 0.28 mol	
	Deduce the amounts, in moles, of A and B in this mixture at equilibrium. [2 marks]	
	Amount of A mol	
	Amount of B mol	
08.2	Give an expression for the equilibrium constant (K_c) for this reaction. [1 mark]	
	K _c	

08.3	The temperature of the equilibrium mixture is decreased.	Do not write outside the box
	Predict the effect, if any, on the value of K_c Give a reason for your prediction. [3 marks]	
	Prediction	
	Reason	
0 8 . 4	In another mixture at equilibrium	
	[A] = 0.48 mol dm ⁻³ [C] = 0.62 mol dm ⁻³	
	For this reaction, the equilibrium constant $K_c = 7.8 \text{ mol}^{-2} \text{ dm}^6$	
	Calculate [B] at equilibrium. Give your answer to the appropriate number of significant figures. [3 marks]	
	2 میلد اد ۲ داریا	9
	[B] mol dm ⁻³	

Turn over 🕨

Section B	Do not write outside the box
Answer all questions in this section.	
Only one answer per question is allowed. For each question completely fill in the circle alongside the appropriate answer.	
CORRECT METHOD WRONG METHODS S	
If you want to change your answer you must cross out your original answer as shown.	
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.	
You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.	
0 9 Which atom contains the most neutrons? [1 mark]	
A ⁵⁴ Cr	
B ⁵⁵ Mn	
C ⁵⁷ Fe	
D ⁵⁸ Ni	

	Use this information for Questions 10 and 11 .	Do not write outside the box
	A student completes a titration to determine the concentration of ethanoic acid in vinegar.	
	25.0 cm ³ of vinegar are transferred to a conical flask using a pipette. A few drops of phenolphthalein are added to the conical flask. Sodium hydroxide solution is added from a burette to the conical flask. The titration is repeated until concordant results are obtained.	
10	Which suggestion improves the accuracy of the titres? [1 mark]	
	A Rinsing the conical flask with vinegar between each titration.	
	B Rinsing the conical flask with sodium hydroxide solution between each titration.	
	C Rinsing the conical flask with water between each titration.	
	D Not rinsing the conical flask between each titration.	
1 1	Which suggestion decreases the percentage uncertainty in the mean titre? [1 mark]	
	A Use a more dilute solution of sodium hydroxide in the burette.	
	B Use a more dilute solution of vinegar.	
	c Rinse the inside of the conical flask with distilled water during each titration.	
	D Rinse the tip of the burette with distilled water near the end point in each titration.	
1 2	Which reaction has the highest percentage atom economy for the production of hydrogen?	
	[1 mark]	
	A LiH + H ₂ O \rightarrow LiOH + H ₂	
	B CO + H ₂ O \rightarrow CO ₂ + H ₂	
	$\textbf{C} \ \textbf{2} \ \textbf{Al} \ \textbf{+} \ \textbf{3} \ \textbf{H}_2 \textbf{O} \ \rightarrow \ \textbf{Al}_2 \textbf{O}_3 \ \textbf{+} \ \textbf{3} \ \textbf{H}_2 \qquad \bigcirc$	
	D CH ₄ + H ₂ O \rightarrow CO + 3H ₂	
	Turn over for the next question	

[1 mark] A NCl₃ ◯	
B CCl ₄	
C PF ₅	
$D SF_6$	
1 4 Which molecule can accept an electron pair during the formation of a coordinate	
bond? [1 mark]	
A NH ₃	
B AlCl ₃	
C SiH ₄	
D PCl ₃	
15 Which reaction has an enthalpy change equal to the standard enthalpy of formation of potassium oxide? [1 mark]	
A $4 \text{K}(s) + O_2(g) \rightarrow 2 \text{K}_2 O(s)$	
B 2K(s) + O(g) \rightarrow K ₂ O(s)	
C $2K^{+}(g) + O^{2-}(g) \rightarrow K_2O(s)$	
D 2K(s) + $\frac{1}{2}O_2(g) \rightarrow K_2O(s)$	

Use this information for Questions 19 to 23.

A student completes some test-tube reactions on five solutions, **P**, **Q**, **R**, **S** and **T**. The student completes each test on separate samples of each solution. Observations are shown in the table.

Solution	Test 1 Add a few drops of H ₂ SO ₄ (aq)	Test 2 Add HNO₃(aq) then a few drops of AgNO₃(aq)	Test 3 Add a few drops of NaOH(aq)	Test 4 Add a few drops of Cl ₂ (aq)
Ρ	White precipitate	Cream precipitate	No visible change	Orange solution
Q	Effervescence	Effervescence and white precipitate	No visible change	No visible change
R	No visible change	No visible change	White precipitate	No visible change
s	White precipitate		No visible change	Dark brown solution
т	No visible change	White precipitate	White precipitate	No visible change

Use the information in the table to answer Questions 19 to 23.

Which solution contains carbonate ions?

	A Solution P	0	
	B Solution Q	0	
	C Solution R	0	
	D Solution S	0	
20	What could be th	e identity of the compound in solution P ?	[1 mark]
	A MgBr ₂	0	
	B BaBr ₂	0	
	C MgCl ₂	0	
	D BaCl ₂	0	

1 9

[1 mark]

QuestionAdditional page, if required.numberWrite the question numbers in the left-hand margin.	

.....

Question number	Additional page, if required. Write the question numbers in the left-hand margin.	
	Copyright information	
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet	
	is published after each live examination series and is available for free download from www.aqa.org.uk	
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.	
	Copyright © 2023 AQA and its licensors. All rights reserved.	

