

	Please write clearly in	block capitals.
	Centre number	Candidate number
	Surname	
	Forename(s)	
	Candidate signature	
		I declare this is my own work.
-		

AS CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 23 May 2023

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Morning

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

	Section A	Do not write outside the box
	Answer all questions in this section.	
0 1	This question is about the analysis of organic compounds.	
	For each pair of compounds in Questions 01.1 and 01.2 , give a reagent (or combination of reagents) that could be added separately to each compound in a single reaction to distinguish between them.	
	State what is observed in each case.	
01.1	CH ₃ CH ₂ CH ₂ CHO and CH ₃ CH ₂ CH(OH)CH ₃ [3 marks]	
	Reagent(s)	
	Observation with CH ₃ CH ₂ CH ₂ CHO	
	Observation with CH ₃ CH ₂ CH(OH)CH ₃	
01.2	Cyclohexane and cyclohexene [3 marks]	
	Reagent(s)	
	Observation with cyclohexane	
	Observation with cyclohexene	

0 1. **3 Table 1** gives the precise relative molecular masses (*M*_r) of some organic compounds measured using high resolution mass spectrometry.

Table 1

Molecular formula	C_5H_{12}	C_5H_{10}	C ₆ H ₆
<i>M</i> r	72.1416	70.1260	to be calculated

Use these data to find the relative atomic masses (A_r) of hydrogen and carbon. Give your answers to 4 decimal places.

Use these calculated A_r values to find the relative molecular mass (M_r) of C₆H₆ Give your answer to 4 decimal places.

[3 marks]

Do not write outside the

box

A_r of hydrogen _____

A_r of carbon _____

M_r of C₆H₆

02	This question is about fuels.	Do not write outside the box
02.1	Crude oil is separated into fractions by fractional distillation.	
	State the meaning of the term 'fraction' in this context.	
	[1 ma	irkj
0 2 . 2	Petrol for cars contains branched and cyclic alkanes produced by catalytic cracking	
	Identify the catalyst used in this process. [1 ma	ırk]
02.3	3-Ethyl-4-methylhexane is a branched alkane in petrol.	
	Draw the skeletal formula of this alkane.	
	[1 ma	urk]
02.4	Give the equation for the complete combustion of 3-ethyl-4-methylhexane.	
	Use the molecular formula for 3-ethyl-4-methylhexane in your equation. [2 mar	ks]

	Turn over for the next question	
		9
	State what is meant by the term 'carbon-neutral'. [1 mark]	
02.7	Petrol sold in the UK contains 10% bioethanol. Bioethanol is ethanol made from crops by fermentation and is considered to be carbon-neutral.	
	Removal of NO	
	Environmental problem	
	State what is used to remove NO from the exhaust gases formed in petrol-fuelled cars. [2 marks]	
	Nitrogen monoxide (NO) is formed when petrol is burned in cars. State one environmental problem that NO causes.	
0 2 . 6	Nitro non monorida (NO) is formed when notrel is hum od in som	
	Give one reason why carbon dioxide absorbs infrared radiation. [1 mark]	
02.5	Carbon dioxide is a product from the combustion of petrol in cars. Carbon dioxide acts as a greenhouse gas when it absorbs infrared radiation.	outside box

Turn over ►

This question is about reactions of halogenoalkanes with hydroxide ions.

Outline the mechanism for the nucleophilic substitution reaction of 1-bromobutane with sodium hydroxide.

[2 marks]

Do not write outside the

box

04	1-Methylcyclohexene and limonene are cyclic alkenes with a citrus smell. 1-Methylcyclohexene is manufactured and used in the chemical industry. Limonene is found naturally in orange peel.	Do not write outside the box
	1-methylcyclohexene limonene	
04.1	1-Methylcyclohexene reacts with HBr to form two structural isomers. The major product is 1-bromo-1-methylcyclohexane.	
	Name and outline the mechanism for the formation of this major product. [5 marks]	
	Name of mechanism	
	Outline of mechanism	

		Do not write outside the
0 4 . 2	Draw the skeletal formula of the minor product formed in the reaction in Question 04.1 .	box
	Explain why the products are formed in different amounts. [4 marks]	
	Skeletal formula	
	Explanation	
	·	
04.3	Draw the structure of the major product when an excess of HBr reacts with limonene.	
	[1 mark]	
		10
	Turn over for the next question	

0 5 . 2	Table 2 shows the enthalpies of combustion of some alcohols.

Table 2	2
---------	---

Alcohol	Enthalpy of combustion / kJ mol ⁻¹
Ethanol	-1367
Propan-1-ol	-2021
Butan-1-ol	-2676

Explain how your answer to Question **05.1** suggests that the alcohol is butan-1-ol.

(If you have been unable to obtain an answer for Question 05.1, assume that the answer is $-2120 \text{ kJ mol}^{-1}$)

[2 marks]

Question 5 continues on the next page

Turn over ►

0 5	0 5 . 3 The equation for the complete combustion of gaseous pentan-1-ol is shown.						Do not v outside box	the
	CH ₃ (CH ₂) ₃ CH ₂ OH(g) + $7\frac{1}{2}$ O ₂ (g) → 5CO ₂ (g) + 6H ₂ O(g) ΔH= -3388 kJ mol ⁻¹							
	Table 3 shows some b	oond enthal	py data.					
		Ţ	Table 3					
		C–H	C–0	O–H	C=O	0=0		
	Bond enthalpy / kJ mol ⁻¹	412	360	463	805	496		
	Use data from Table 3 pentan-1-ol.	to calculat	e a value fo	or the mean	C–C bond	.,	marks]	

kJ mol⁻¹

			Do not write
0 5.4	The energy stored in fuels can be compared using energy density values measured in kJ dm $^{\rm -3}$		outside the box
	Calculate the energy density of butan-1-ol.		
	enthalpy of combustion of butan-1-ol = $-2676 \text{ kJ mol}^{-1}$ density of butan-1-ol = 0.810 kg dm ⁻³ relative molecular mass (M_r) of butan-1-ol = 74.0	[2 marks]	
	Energy density	kJ dm ^{−3}	10
	g, as		
	Turn over for the next question		
	-	Γurn over ►	

L

0 6	This question is	about intermolecular f	orces in some organic cor	npounds.	D
	Table 4 gives so	ome information about	three organic compounds	3.	
		Table	4		
Compou	nd	dichloromethane	tetrachloromethane	propan-1-ol	
Boiling p	ooint / °C	40	77	97	
Polarity	of molecules	polar	non-polar	polar	
0 6 . 1	State why the C	-Cl bonds in dichloron	nethane and tetrachlorom		nark]
06.2	Suggest why tet	rachloromethane mole	ecules are non-polar.	[1 n	nark]
0 6.3	Explain why tetra	achloromethane has a	higher boiling point than	dichloromethane. [2 m a	arks]
-					
-					

0 7.2	Name and complete the mechanism for this reaction. [4 marks]	Do not write outside the box
	Name of mechanism	
	$CH_{3} - CH_{3} H + H^{+} + CH_{3} CH_{3} CH_{3} CH_{3} CH_{3}$	
0 7 . 3	In a similar experiment, 12.0 cm ³ of 2,3,3-trimethylbutan-1-ol (M_r = 116.0) produces 6.12 g of 2,3,3-trimethylbut-1-ene.	
	Calculate the percentage yield.	
	density of 2,3,3-trimethylbutan-1-ol = 0.818 g cm ⁻³ [5 marks]	
	Percentage yield	11
	Turn over ►	

0 8 Draw the Maxwell–Boltzmann distribution curves for a fixed mass of a gas at two different temperatures.

This gas decomposes when heated.

By reference to these distribution curves, explain why the rate of decomposition of this gas increases at higher temperatures.

[6 marks]

Do not write outside the box

Section B	Do not write outside the box
Answer all questions in this section.	
Only one answer per question is allowed. For each question completely fill in the circle alongside the appropriate answer.	
CORRECT METHOD WRONG METHODS (S) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
If you want to change your answer you must cross out your original answer as shown.	
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.	
You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.	
0 9 Which monomer forms this polymer?	
$\begin{pmatrix} CH_3 \\ \\ C - CH_2 \\ \\ CH_2 \end{pmatrix} = \begin{pmatrix} CH_2 \\ \\ CH_2 \end{pmatrix}$	
\ CH ₃ /n [1 mark]	
A but-1-ene	
B <i>E</i> -but-2-ene	
C Z-but-2-ene	
D methylpropene	

		Do not wri
1 6	Which statement about the industrial production of ethanol from ethene at 30 correct?	00 °C is
	$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g) \qquad \Delta H = -46 \text{ kJ mol}^{-1}$	[1 mark]
	A An increase in pressure decreases the equilibrium yield of ethanol.	0
	B An increase in pressure increases the value of K_c	0
	C An increase in temperature increases the equilibrium yield of ethanol.	0
	${\bf D}$ An increase in temperature decreases the value of ${\it K}_{c}$	0
1 7	What is the minimum volume, in dm ³ , of air needed for the complete combus 1 dm ³ of methane?	stion of
	Assume that air contains 20% of oxygen by volume.	
	Assume that all volumes are measured at the same temperature and pressu	ire. [1 mark]
	A 1 •	
	B 2 \bigcirc	
	C 5 \bigcirc	
	D 10 \bigcirc	
1 8	Which is the IUPAC name for this compound?	
	C = C $H_3C - CH_2$ $CH_2 - CH_3$	
	$H_3C - CH_2$ $CH_2 - CH_3$	[4
		[1 mark]
	A E-3-fluorohex-3-ene	
	B E-4-fluorohex-3-ene	
	C Z-3-fluorohex-3-ene	
	D Z-4-fluorohex-3-ene	

IB/M/Jun23/7404/2

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Do not write outside the box

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2023 AQA and its licensors. All rights reserved.

IB/M/Jun23/7404/2