

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	
	I declare this is my own work.

AS CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 21 May 2024 Morning

Time allowed: 1 hour 30 minutes

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 80.

Advice

You are advised to spend about 65 minutes on Section A and 25 minutes on Section B.

For Examiner's UseQuestionMark12233343536372Section B3TOTAL

	ction A	Se	
	stions in this section.	Answer all ques	
š.	s of organic compounds.	estion is about the analysi	1 This que
anic compounds.	nical tests on three organi	shows the results of cher	1.1 Table 1
	table.	te the empty boxes in the	Comple
	able 1	Та	
	O OH		Chemical test
no visible change		orange to colourless	Add bromine water
no visible change	bubbles of gas	no visible change	
	no visible change	no visible change	Warm with Fehling's solution

01.20.500 g of a hydrocarbon is analysed. The hydrocarbon contains 0.450 g of carbon.

Calculate the empirical formula of this hydrocarbon.

[3 marks]

Do not write outside the

box

6

Empirical formula

Turn over for the next question

Turn over ►

0 3	This question is about CFCl ₃	Do not write outside the box
	$CFCl_3$ used to be the propellant in most aerosol cans.	
0 3.1	Use IUPAC rules to name CFCl ₃ [1 mark	k]
03.2	Give an equation for each of the two propagation steps in the conversion of CHFCl ₂ into CFCl ₃ [2 marks Equation 1	
	Equation 2	
03.3	In the presence of ultraviolet radiation, $CFCl_3$ breaks down in the upper atmosphere t form chlorine free radicals.	0
	Give an equation for this reaction. [1 mark	k]
		_

9

0 3.4	Chlorine free radicals catalyse the decomposition of ozone.	Do not write outside the box
	Give two equations to show how chlorine free radicals decompose ozone.	
	[2 marks]	
	Equation 2	
0 3.5	The production and use of CFCs have been banned in many countries because they	
	State why ozone in the upper atmosphere is important for life on Earth.	
	[1 mark]	
		7
	i urn over for the next question	

lurn over

Question 4 continues on the next page

Turn over ►

04.3	Explain why compound K is the major product in the reaction in Question 04.2 . [3 marks]	outside the box
		14
	Turn over for the next question	
	Turn over ►	

D-

••

0 5.2	Propane (C_3H_8) undergoes complete combustion in a plentiful supply of oxygen.	Do not write outside the box
	Give an equation for the complete combustion of propane.	
	Use this equation to calculate the minimum volume, in cm ³ , of oxygen gas needed for the complete combustion of 50 cm ³ of propane gas. Assume that the volumes of both gases are measured at the same temperature and pressure.	
	Equation for combustion	
	Volume of oxygen gas cm ³	9
	Turn over ►	

Do					
out S	perature on the rate of hydrolysis	fect of changing the te	udent investigates the ef -iodobutane.	6 A s	
		hod:	student follows this meth	The	
	to a test tube. If the liquid). to a separate test tube. own temperature (between 5 and the test tube containing he test tube towards the cross. due to the	4 drops of 1-iodobutan cross (below the level o ⁻³ silver nitrate solution st tubes. beaker of water at a kr silver nitrate solution in imer. ent reaction mixture in ross is no longer visible	dd 5 cm ³ of ethanol and a ark this test tube with a o dd 5 cm ³ of 0.05 mol dm lace a stopper in both test lace both test tubes in a 0 °C). fter 5 minutes, pour the s iodobutane and start a ti pok through the transpare top the timer when the cr ellow precipitate formed.	 A M A F F 6 A 1 L S y 	
		e formed in the reactior	tify the yellow precipitate	6.1 Ide	
1	[1 mark]				
<] _	peratures.	eriment at different terr	student repeats the expe	The	
<] 	peratures.	eriment at different tem results. Table 2	student repeats the expo le 2 shows the student's	The Tal	
<] 	beratures. $\frac{1}{t} / s^{-1}$	eriment at different tem results. Table 2 Time <i>t /</i> s	student repeats the expo le 2 shows the student's Temperature / °C	The Tal	
<] -	beratures. $\frac{\frac{1}{t} / s^{-1}}{0.0080}$	eriment at different tem results. Table 2 Time <i>t I</i> s 125	student repeats the expe le 2 shows the student's Temperature / °C 6	The Tal	
<]	beratures. $\frac{\frac{1}{t}}{s} = \frac{1}{s}$ 0.0080 0.0120	eriment at different terr results. Table 2 Time <i>t I</i> s 125 83	student repeats the expe le 2 shows the student's Temperature / °C 6 15	The Tal	
<]	beratures. $\frac{\frac{1}{t} / s^{-1}}{0.0080}$ 0.0120 0.0200	eriment at different terr results. Table 2 Time <i>t I</i> s 125 83 50	student repeats the expe le 2 shows the student's Temperature / °C 6 15 28	The Tal	
<]	beratures. $\frac{\frac{1}{t} / s^{-1}}{0.0080}$ 0.0120 0.0200 0.0263	eriment at different terr results. Table 2 Time <i>t /</i> s 125 83 50 38	student repeats the expe le 2 shows the student's Temperature / °C 6 15 28 34	The Tal	

		D
06.3	The student repeats the investigation using 1-bromobutane instead of 1-iodobutane.	Do not write outside the box
	State and explain how the rate of reaction for 1-bromobutane compares with the rate for 1-iodobutane.	
	Predict how the graph will differ for 1-bromobutane compared to 1-iodobutane. [3 marks]	
	How rate of reaction for 1-bromobutane will compare	
	Explanation	
	How graph for 1-bromobutane will differ	7

A third way of making propanoic acid uses the reaction between ethene, steam and carbon monoxide in the presence of a catalyst.						
	$C_2H_4(g) + H_2O(g)$) + CO(g) ≓	CH ₃ CH ₂ CO	OH(g) Δ <i>ŀ</i>	<i>H</i> = −59 kJ mol ^{−1}	
0 7.6	Give an expression for th	ne equilibrium	constant (<i>K</i> _c)	for this reac	tion. [1 mark]	
	<i>K</i> _c =					
07.7	Table 3 shows the amound of volume 1.20 dm ³ at a state of the second state of the	int of each su constant temp	bstance in an perature.	equilibrium r	mixture in a container	
		Tab	ole 3			
	Substance	$C_2H_4(g)$	H ₂ O(g)	CO(g)	CH ₃ CH ₂ COOH(g)	
	Amount of substance / mol	0.062	0.078	0.062	0.420	
	Calculate K _c					
	State the units.				[4 marks]	
				Kc		
	Question	7 continues	on the next	Unit page	s	

IB/M/Jun24/7404/2

Turn over ►

0 7 8	Predict the effect of increasing the temperature on the yield of propanoic acid	Do not write outside the box
	Explain your answer. [3 marks]	
	Effect on yield	
	Explanation	
		17

Answer all questions in this section. Only one answer per question is allowed. For each question completely fill in the circle alongside the appropriate answer. CORRECT METHOD WRONG METHODS REAL of If you want to change your answer you must cross out your original answer as shown. If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. To use additional sheets for this working. Only one use additional sheets for this working. The equation shows how P reacts with Q to make R and S. $P + 2Q \rightarrow R + S$ When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained. What is the percentage yield of R in this reaction? If mark A $\frac{0.15}{0.25} \times 100$ B $\frac{0.15}{0.40} \times 100$ D $\frac{0.15}{0.65} \times 100$ D 0		Section B	Do
Only one answer per question is allowed. For each question completely fill in the circle alongside the appropriate answer. correct METHOD WRONG METHODS If you want to change your answer you must cross out your original answer as shown. If If you want to change your answer previously crossed out, ring the answer you now wish to select as shown. If If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. If You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working. You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working. If the equation shows how P reacts with Q to make R and S. $P + 2Q \rightarrow R + S$ When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained. What is the percentage yield of R in this reaction? If mark] A $0.15 \\ 0.20 \times 100$ \Box B $0.15 \\ 0.25 \times 100$ \Box C $0.15 \\ 0.40 \times 100$ \Box D $0.15 \\ 0.65 \times 100$ \Box		Answer all questions in this section.	
Only one answer per question is allowed. For each question completely fill in the circle alongside the appropriate answer. CORRECT METHOD INCOME METHODS If you want to change your answer you must cross out your original answer as shown. Image: Constant of the system of th			
CORRECT METHOD WRONG METHODS Image: Construction of the second sec	Only one a For each q	answer per question is allowed. question completely fill in the circle alongside the appropriate answer.	
If you want to change your answer you must cross out your original answer as shown. If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working. D 8 The equation shows how P reacts with Q to make R and S. $P + 2Q \rightarrow R + S$ When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained. What is the percentage yield of R in this reaction? [1 mark] A $\frac{0.15}{0.25} \times 100$ C $\frac{0.15}{0.40} \times 100$ D $\frac{0.15}{0.65} \times 100$ D $\frac{0.15}{0.65} \times 100$ C $\frac{0.15}{0.65} \times 100$ D $\frac{0.15}{0.65} \times 100$	CORRECT MET	THOD WRONG METHODS 🐼 💿 < 🗹	
If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown. You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working. D 8 The equation shows how P reacts with Q to make R and S. $P + 2Q \rightarrow R + S$ When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained. What is the percentage yield of R in this reaction? A $\frac{0.15}{0.25} \times 100$ C B $\frac{0.15}{0.25} \times 100$ C C $\frac{0.15}{0.40} \times 100$ C D $\frac{0.15}{0.65} \times 100$ C	If you want	t to change your answer you must cross out your original answer as shown. 🔀	
You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working. $D \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	lf you wish as shown.	to return to an answer previously crossed out, ring the answer you now wish to select	ct
D 8The equation shows how P reacts with Q to make R and S. $P + 2Q \rightarrow R + S$ When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained.What is the percentage yield of R in this reaction? A $\frac{0.15}{0.20} \times 100$ B $\frac{0.15}{0.25} \times 100$ C $\frac{0.15}{0.40} \times 100$ D $\frac{0.15}{0.65} \times 100$	You may d Do not use	to your working in the blank space around each question but this will not be marked. e additional sheets for this working.	
$P + 2Q \rightarrow R + S$ When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained. What is the percentage yield of R in this reaction? [1 mark] $A \frac{0.15}{0.20} \times 100$ $B \frac{0.15}{0.25} \times 100$ $C \frac{0.15}{0.40} \times 100$ $D \frac{0.15}{0.65} \times 100$	0 8	The equation shows how P reacts with Q to make R and S .	
When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained. What is the percentage yield of R in this reaction? $\begin{bmatrix} 1 \text{ mark} \end{bmatrix}$ A $\frac{0.15}{0.20} \times 100$ B $\frac{0.15}{0.25} \times 100$ C $\frac{0.15}{0.40} \times 100$ D $\frac{0.15}{0.65} \times 100$ C		$P + 2Q \rightarrow R + S$	
What is the percentage yield of R in this reaction? [1 mark] A $\frac{0.15}{0.20} \times 100$ \odot B $\frac{0.15}{0.25} \times 100$ \odot C $\frac{0.15}{0.40} \times 100$ \odot D $\frac{0.15}{0.65} \times 100$ \odot		When a mixture of 0.25 mol of P and 0.40 mol of Q react, 0.15 mol of R is obtained.	
A $\frac{0.15}{0.20} \times 100$ \bigcirc B $\frac{0.15}{0.25} \times 100$ \bigcirc C $\frac{0.15}{0.40} \times 100$ \bigcirc D $\frac{0.15}{0.65} \times 100$ \bigcirc		What is the percentage yield of R in this reaction? [1 ma	ark]
B $\frac{0.15}{0.25} \times 100$ \bigcirc C $\frac{0.15}{0.40} \times 100$ \bigcirc D $\frac{0.15}{0.65} \times 100$ \bigcirc		A $\frac{0.15}{0.20} \times 100$	
C $\frac{0.15}{0.40} \times 100$ \bigcirc D $\frac{0.15}{0.65} \times 100$ \bigcirc		B $\frac{0.15}{0.25} \times 100$	
D $\frac{0.15}{0.65} \times 100$		c $\frac{0.15}{0.40} \times 100$	
		D $\frac{0.15}{0.65} \times 100$	

IB/M/Jun24/7404/2

Turn over ►

IB/M/Jun24/7404/2

25

		Do not write outside the
1 6	Octadecane is a straight-chain alkane containing 18 carbon atoms per molecule. It is cracked to produce oct-1-ene and two other compounds.	box
	Which equation represents this reaction? [1 marl	<]
	$A C_{18}H_{36} \rightarrow C_8H_{16} + C_6H_{12} + 2C_2H_4 $	
	$\mathbf{B} \ C_{18}H_{38} \rightarrow C_8H_{16} + C_4H_{10} + 2C_3H_6 $	
	C $C_{18}H_{38} \rightarrow C_8H_{18} + C_2H_4 + 2C_4H_8$	
	D $C_{18}H_{38} \rightarrow C_8H_{18} + C_4H_8 + 2C_3H_6$	
1 7	Which of these alkanes has the highest boiling point?	
	[1 marl	<]
	A decane	
	B hexane	
	C 2,3-dimethyloctane	
	D 2,3-dimethylbutane	
1 8	High resolution mass spectrometry can be used to determine the precise relative molecular mass of compounds.	
	Which compound has a precise relative molecular mass that is different from the	
	precise relative molecular mass of butanone? [1 marl	<]
	A but-3-en-1-ol	
	B cyclobutanol	
	C methylpropanal	
	D prop-2-enoic acid	

29

Turn over ►

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 AQA and its licensors. All rights reserved.

IB/M/Jun24/7404/2