

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
TOTAL		

	Answer all questions in the spaces provided.
0 1	This question is about equilibria.
0 1.1	Give two features of a reaction in dynamic equilibrium. [2 marks]
	Feature 1
	Feature 2
01.2	A gas-phase reaction is at equilibrium. When the pressure is increased the yield of product decreases.
	State what can be deduced about the chemical equation for this equilibrium. [1 mark]
	Question 1 continues on the next page
	Turn ovor N

		Do
0 1.3	Carbon monoxide and hydrogen react to form methanol.	0
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
	0.430 mol of carbon monoxide is mixed with 0.860 mol of hydrogen. At equilibrium, the total pressure in the flask is 250 kPa and the mixture contains 0.110 mol of methanol.	
	Calculate the amount, in moles, of carbon monoxide present at equilibrium.	
	Calculate the partial pressure, in kPa, of carbon monoxide in this equilibrium mixture.	
	[3 marks]]
	Amount of carbon monoxide mol	
	Amount of carbon monoxide mol Partial pressure kPa	
0 1.4		
0 1.4	Partial pressure kPa Give an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$	
0 1.4	Partial pressure kPa Give an expression for the equilibrium constant (K_p) for this reaction.	3
0 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]]
) 1.4	Partial pressure kPa Give an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$]
) 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	3
1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	3
) 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	3
) 1.4	Partial pressurekPaGive an expression for the equilibrium constant (K_p) for this reaction. $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ [1 mark]	.]

				D
0 1 . 5	A different mixtu temperature <i>T</i> .	re of carbon monoxide and hyd	rogen is left to reach	equilibrium at a
	Some data for th	nis equilibrium are shown in Tab	le 1.	
		Table 1		
		Partial pressure of CO	125 kPa]
		Partial pressure of CH ₃ OH	5.45 kPa	
		κ _p	1.15 x 10 ⁻⁶ kPa ⁻²]
		$CO(g) + 2H_2(g) \rightleftharpoons$	CH₃OH(g)	
	Calculate the pa	rtial pressure, in kPa, of hydrog	en in this equilibrium	mixture. [3 marks]
		Partial pres	sure	kPa
		Partial pres	sure	kPa
0 1.6	Use the K_p value temperature <i>T</i> .	Partial press e from Table 1 to calculate a val		
0 1.6	Use the K_p value temperature T .		ue for K_p for the follow	
0 1.6	Use the K_p value temperature T . Give the units fo	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1 . 6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	ving reaction at
0 1.6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow	wing reaction at [2 marks]
0 1 . 6	temperature <i>T</i> .	from Table 1 to calculate a val CH ₃ OH(g) \rightleftharpoons CO(g)	ue for K_p for the follow) + 2 H ₂ (g)	ving reaction at [2 marks]

02	Rhenium ha	as an atomic number of 75		
02.1	Define the t	erm relative atomic mass.		[2 marks]
02.2	The relative	atomic mass of a sample of rhen	ium is 186.3	
	Table 2 sho	ows information about the two isot		e.
	1	Table		1
		Relative isotopic mass 185	Relative abundance	-
		To be calculated	17	-
	Calculate th Show your	ne relative isotopic mass of the oth working.	er rhenium isotope.	[2 marks]
		Relative iso	topic mass	
02.3	State why tl	he isotopes of rhenium have the s	ame chemical properties.	[1 mark]

spectrometer. 0 2 . 4 A ¹⁸⁵Re⁺ ion with a kinetic energy of 1.153 × 10⁻¹³ J travels through a 1.450 m flight tube. The kinetic energy of the ion is given by the equation $KE = \frac{1}{2}mv^2$ where m = mass / kg $v = \text{speed} / \text{m s}^{-1}$ KE = kinetic energy / J Calculate the time, in seconds, for the ion to reach the detector. The Avogadro constant, $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ [5 marks]

7

A sample of rhenium is ionised by electron impact in a time of flight (TOF) mass

s

Time

0 3	This question is about hydrogen peroxide, H ₂ O ₂
	The half-equation for the oxidation of hydrogen peroxide is
	$H_2O_2 \rightarrow O_2 + 2H^+ + 2e^-$
	Hair bleach solution contains hydrogen peroxide.
	A sample of hair bleach solution is diluted with water. The concentration of hydrogen peroxide in the diluted solution is 5.00% of that in the original solution. A 25.0 cm ³ sample of the diluted hair bleach solution is acidified with dilute sulfuric acid. This acidified sample is titrated with 0.0200 mol dm ⁻³ potassium manganate(VII) solution. The reaction is complete when 35.85 cm ³ of the potassium manganate(VII) solution are added.
0 3.1	Give an ionic equation for the reaction between potassium manganate(VII) and acidified hydrogen peroxide.
	Calculate the concentration, in mol dm ⁻³ , of hydrogen peroxide in the original hair bleach solution.
	(If you were unable to write an equation for the reaction you may assume that the mole ratio of potassium manganate(VII) to hydrogen peroxide is 3:4 This is not the correct mole ratio.)
	[5 marks]
	Concentration mol dm ⁻³

ſ

03.2	State why an indicator is not added in this titration.	[1 mark]	Do not write outside the box
03.3	Give the oxidation state of oxygen in hydrogen peroxide.	[1 mark]	
0 3.4	Hydrogen peroxide decomposes to form water and oxygen.		
	Give an equation for this reaction.		
	Calculate the amount, in moles, of hydrogen peroxide that would be needed produce 185 cm ³ of oxygen gas at 100 kPa and 298 K	to	
	The gas constant, $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$	[5 marks]	
	Equation		
	Amount	_ mol	
		urn over ►	

i urn over

Do not write outside the 0 3 5 Hydrazine (N₂H₄) is used as a rocket fuel that is oxidised by hydrogen peroxide. The equation for this reaction in the gas phase is Н N-N + 2H-O-O-H \longrightarrow N \equiv N + 4H-O-H н The enthalpy change for this reaction, $\Delta H = -789 \text{ kJ mol}^{-1}$ Table 3 shows some mean bond enthalpy values. Table 3 N-H N-N N≡N O-H Mean bond 388 163 944 463 enthalpy / kJ mol⁻¹ Define the term mean bond enthalpy. Use the equation and the data in Table 3 to calculate a value for the O-O bond enthalpy in hydrogen peroxide. [5 marks] Definition _____ Bond enthalpy _____ kJ mol⁻¹

17

box

0 4	This question is about acids and bases.	Do not write outside the box
04.1	Calculate the pH of a 0.150 mol dm ⁻³ solution of ethanoic acid at 25 °C Give your answer to 2 decimal places.	
	For ethanoic acid, $K_a = 1.74 \text{ x } 10^{-5} \text{ mol dm}^{-3}$ at 25 °C [3 marks]	
	рН	
04.2	Strontium is an element in Group 2.	
	Calculate the pH of a 0.0100 mol dm ⁻³ solution of strontium hydroxide at 10 °C You may assume that strontium hydroxide is completely dissociated in this solution.	
	At 10 °C the ionic product of water, $K_w = 2.93 \times 10^{-15} \text{ mol}^2 \text{ dm}^{-6}$ [3 marks]	
	рН	

14

4.3 The pH of a barium hydroxide solution is lower at 50 °C than at 10 °C At 50 °C a 25 cm³ sample of this barium hydroxide solution was neutralised by 22.45 cm³ of hydrochloric acid added from a burette. Deduce the volume of this hydrochloric acid that should be added from a burette to neutralise another 25 cm³ sample of this barium hydroxide solution at 10 °C [2 marks] Circle (①) the correct answer. > 22.45 cm³ = 22.45 cm³ < 22.45 cm³ > 22.45 cm³ = 22.45 cm³ < 22.45 cm³ Explain your answer		
22.45 cm³ of hydrochloric acid added from a burette. Deduce the volume of this hydrochloric acid that should be added from a burette to neutralise another 25 cm³ sample of this barium hydroxide solution at 10 °C [2 marks] Circle () the correct answer. > 22.45 cm³ = 22.45 cm³ < 22.45 cm³ < 22.45 cm³	4.3	The pH of a barium hydroxide solution is lower at 50 $^\circ C$ than at 10 $^\circ C$
neutralise another 25 cm ³ sample of this barium hydroxide solution at 10 °C [2 marks] [2 marks] Circle () the correct answer. > 22.45 cm ³ = 22.45 cm ³ Explain your answer		
 > 22.45 cm³ = 22.45 cm³ < 22.45 cm³ Explain your answer		neutralise another 25 cm ³ sample of this barium hydroxide solution at 10 °C
Explain your answer		Circle (O) the correct answer.
State how a buffer solution can be made from solutions of potassium hydroxide and ethanoic acid. Give an equation for the reaction between potassium hydroxide and ethanoic acid. State how this buffer solution resists changes in pH when a small amount of acid is added. [3 marks] How buffer solution is made Equation		> 22.45 cm ³ = 22.45 cm ³ < 22.45 cm ³
ethanoic acid. Give an equation for the reaction between potassium hydroxide and ethanoic acid. State how this buffer solution resists changes in pH when a small amount of acid is added. [3 marks] How buffer solution is made		Explain your answer
ethanoic acid. Give an equation for the reaction between potassium hydroxide and ethanoic acid. State how this buffer solution resists changes in pH when a small amount of acid is added. [3 marks] How buffer solution is made		
ethanoic acid. Give an equation for the reaction between potassium hydroxide and ethanoic acid. State how this buffer solution resists changes in pH when a small amount of acid is added. [3 marks] How buffer solution is made		
State how this buffer solution resists changes in pH when a small amount of acid is added. [3 marks] How buffer solution is made [4.4	
added. [3 marks] How buffer solution is made Equation		Give an equation for the reaction between potassium hydroxide and ethanoic acid.
How buffer solution is made		
Equation		[3 marks]
		How buffer solution is made
How buffer solution resists pH change		
How buffer solution resists pH change		Equation
How buffer solution resists pH change		Equation
		Equation
		·
		·

IB/M/Jun22/7405/1

04.5

. 5 A buffer solution is made by adding 2.00 g of sodium hydroxide to 500 cm³ of 1.00 mol dm⁻³ ethanoic acid solution.

Calculate the pH of this buffer solution at 25 °C

Give your answer to 2 decimal places.

For ethanoic acid, $K_a = 1.74 \text{ x} 10^{-5} \text{ mol dm}^{-3} \text{ at } 25 \text{ }^{\circ}\text{C}$

[5 marks]

Do not write outside the

box

рН _____

		Do not writ
0 5	This question is about Period 3 elements and their compounds.	outside the box
0 5.1	Which is not a correct statement about magnesium hydroxide? [1 mark]	
	Tick (\checkmark) one box.	
	It is used to neutralise stomach acid	
	It forms a solution with pH = 14 at 25 °C	
	It has the empirical formula H ₂ MgO ₂	
0 5.2	Give an equation for the reaction of aluminium oxide with sulfuric acid. [1 mark]	
0 5.3	Identify a reagent or test that could be used to distinguish between aqueous solutions	
	of sulfur dioxide and sulfur trioxide with the same concentrations.	
	State the observation in each case. [3 marks]	
	Reagent or test	
	Observation with sulfur dioxide solution	
	Observation with sulfur trioxide solution	
	Question 5 continues on the next page	

Turn over ►

0 5.4	The mass spectrum of the element phosphorus has a peak at $\frac{m}{z}$ = 124	Do not writ outside th box
	Give the formula of the species responsible for this peak. [2 marks]	
0 5.5	Give an equation for the reaction of phosphorus(V) oxide with sodium hydroxide solution. [1 mark]	
0 5.6	Draw the displayed formula of the molecule formed when phosphorus(V) oxide reacts with water.	
	[1 mark]	

[6 marks]

Substance

sodium chloride

chlorine

Table 4

Melting point / K

1074

172

0 5. **7 Table 4** shows the melting points of three substances.

	hydrogen chloride	158	
Explain why the melti	ng points of these sub	stances are different.	
You should refer to th	ne structure of and bor	nding in each substand	ce.

06	This question is about some elements in Group 7 and their compounds.
06.1	Chlorine is added to some drinking water supplies to decrease the risk of people suffering from diseases such as cholera.
	State why the amount of chlorine added must be controlled. [1 mark]
0 6.2	Give an equation for the reaction of chlorine with water to form a solution containing two acids.
	Explain, with reference to electrons, why this is a redox reaction. [2 marks]
	Equation
	Explanation
06.3	A student bubbles chlorine gas through a solution of sodium iodide.
	State the observation the student would make.
	Give an ionic equation for the reaction. [2 marks]
	Observation
	Ionic equation

0 6.4	The student adds a few drops of concentrated sulfuric acid to a small amount of
	solid sodium iodide.
	Two gaseous sulfur-containing products are formed.
	Give an equation for the formation of each of these sulfur-containing products.
	State the role of sulfuric acid in the formation of these products. [3 marks]
	Equation 1
	Equation 2
	Role
0 6.5	The student adds a few drops of acidified silver nitrate solution to a solution of an unknown impure sodium halide. The student observes bubbles of gas and a colourless solution. The student bubbles the gas through calcium hydroxide solution and a white precipitate forms.
	Deduce the identity of the sodium halide.
	Suggest the identity of the gas.
	Give an ionic equation for the formation of this gas from the impurity. [3 marks]
	Identity of sodium halide
	Identity of gas
	Ionic equation
	Question 6 continues on the next page
	Question o continues on the next page

Turn over ►

			Do not w
06.6	The $ClF_{2^{+}}$ ion contains two different Group 7 elements.		outside box
	Use your understanding of the electron pair repulsion theory to draw the sha this ion.	ape of	
	Include any lone pairs of electrons that influence the shape.		
	Explain why the ion has the shape you have drawn.		
	Suggest a value for the bond angle in the ion.	[3 marks]	
	Shape		
	Explanation		
	Bond angle		
0 6 . 7	Magnesium is used in the extraction of titanium from titanium(IV) chloride.		
	Give an equation for this reaction.	[1 mark]	
			15

0 7	Copper(II) complexes are coloured. The colour is caused by the d electrons of copper moving from their ground s an excited state.	state to
0 7 . 1	Explain why aqueous solutions containing [CuCl₄] ^{2–} ions are yellow.	[2 marks]
0 7.2	When a d electron moves from the ground state to the excited state in a copper complex, the energy change is $3.98 \times 10^{-19} \text{ J}$	
	The Planck constant, $h = 6.63 \times 10^{-34} \text{ J s}$	
	Calculate the frequency, in s^{-1} , of the light absorbed.	[2 marks]
	Frequency	S ^{_1}
0 7.3	State three ways in which a transition metal complex can be changed to alter colour.	r its [3 marks]
	1	
	2	
	3	
	Question 7 continues on the next page	

Turn over ►

	Consider the following reaction scheme in which P , Q and R are different complex ions of copper.	Do not write outside the box
	$\begin{bmatrix} CuCl_4 \end{bmatrix}^{2-} (aq) \xrightarrow{excess water} P (aq) \\ excess \\ aqueous \\ ammonia \\ \end{bmatrix} Na_4 EDTA (aq)$	
	↓ ↓ Q (aq) R (aq)	
0 7.4	Name the shape of the [CuCl ₄] ^{2–} ion. [1 mark]	
07.5	Give an ionic equation for the conversion of $[CuCl_4]^{2-}$ to complex ion P . [1 mark]	
0 7.6	State the colour of the solution containing the complex ion Q . Give an ionic equation for the conversion of $[CuCl_4]^{2-}$ to Q . [2 marks]	
	Colour	
0 7.7	Identify complex ion R. [1 mark]	12

	The EMF of an alkaline hydrogen–oxygen fuel cell is +1.23 V The standard electrode potential for one of the electrodes in the alkaline hydrogen–oxygen fuel cell is	Do not write outside the box
	$2 H_2 O(I) + 2e^- \rightarrow 2 OH^-(aq) + H_2(g)$ $E^{\circ} = -0.83 V$	
08.4	Give the half-equation for the other electrode and calculate its standard electrode potential. [2 marks]	
	Equation	
08.5	E° Suggest why the EMF values of the acidic and alkaline hydrogen–oxygen fuel cells are the same. [1 mark]	6
	END OF QUESTIONS	

28

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet
	is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2022 AQA and its licensors. All rights reserved.

