

Please write clearly in	ı block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 2 Organic and Physical Chemistry

Tuesday 18 June 2024

Morning

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
TOTAL	

Time allowed: 2 hours

. 2 **Table 1** shows the initial rate of this reaction for experiments using different mixtures containing propanone, bromine and hydroxide ions.

Experiment	[CH₃COCH₃] / mol dm⁻³	[Br₂] / mol dm⁻³	[OH⁻] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹	
1	1.50 × 10 ^{−2}	2.50 × 10 ^{−2}	2.50 × 10 ^{−2}	2.75 × 10 ^{−11}	
2	1.50 × 10 ^{−2}	2.50 × 10 ^{−2}		8.25 × 10 ^{−11}	
3	3.75 × 10 ^{−3}	5.00 × 10 ⁻²	1.00 × 10 ⁻¹		

Table 1

Complete Table 1.

Use the data from experiment **1** to calculate the rate constant *k* for this reaction.

Give the units for the rate constant.

[5 marks]

Do not write outside the

box

k		

Units

Question 1 continues on the next page

Turn over ►

		Do not write outside the box
0 2	This question is about an equilibrium.	DOX
	$2 \mathbf{P}(aq) + \mathbf{Q}(aq) \rightleftharpoons \mathbf{R}(aq) + 3 \mathbf{S}(aq)$	
	A 25.0 cm ³ sample of a solution of P is added to a 20.0 cm ³ sample of a solution of Q . The mixture is allowed to reach equilibrium.	
	The amounts in the equilibrium mixture are	
	P = 0.0145 mol Q = 0.0275 mol R = 0.0115 mol S = 0.0345 mol	
02.1	Calculate the amount, in moles, of P before the reaction with Q .	
	Use your answer to calculate the concentration, in mol dm ⁻³ , of P in the initial 25.0 cm ³ sample.	
	[2 marks]	
	Amount of P mol	
	Amount of P mol	
	Concentrationmol dm ⁻³	

		Do not write outside the
02.2	Give the expression for the equilibrium constant, \mathcal{K}_{c}	box
	Calculate the value of K_c and deduce its units.	
	[4 marks]	
	Kc	
	Value of <i>K</i> _c Units	
0 2 . 3	Explain why the amount of ${f S}$ increases when water is added to the	
	equilibrium mixture.	
	[2 marks]	
		8
	Turn over for the next question	

box

		Do not write
03.4	A sample of butane has a volume of 20 cm ³ at room temperature and pressure.	outside the box
	The sample is burned completely in 1350 cm ³ of air.	
	The final mixture is cooled to room temperature and pressure.	
	$C_4H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$	
	Calculate the total volume of gas in the final mixture. Assume that air contains 21% by volume of oxygen. [4 marks]	
	Total volume of gas remaining cm ³	
0 3.5	Natural gas is used in power stations to produce electricity.	
	Natural gas contains sulfur impurities. Sulfur dioxide forms when these impurities are burned.	
	State an environmental problem caused by sulfur dioxide.	
	Give the formula of a compound that is used to help remove sulfur dioxide from the	
	combustion products. [2 marks]	
	Environmental problem	
	Formula of compound	10

04	This question is about the preparation of an ester.
04.1	Ester F can be prepared from propan-2-ol and ethanoic acid.
	Give an equation for this reaction.
	Name ester F. [2 marks]
	Equation
	Name
	This method is used to prepare a sample of ester F .
	Step 1 Mix 10 cm ³ of propan-2-ol with 10 cm ³ of ethanoic acid. Add 5 drops of concentrated sulfuric acid. Reflux this reaction mixture for 20 minutes.
	Step 2 Transfer the cooled reaction mixture to a separating funnel. Add 20 cm ³ of aqueous sodium carbonate and shake the mixture.
	Step 3 Transfer the organic layer to a beaker and add 5 g of anhydrous magnesium sulfate. Decant off the organic liquid.
	Step 4 Collect the ester using simple distillation.
04.2	Describe how Step 1 should be done.
	In your description you should
	 give details of suitable equipment used to add each reagent to the reflux apparatus draw a labelled diagram of the apparatus used for refluxing the reaction mixture explain any safety precautions needed other than eye protection.
	[6 marks]

Do not write outside the box

Turn over ►

		Do not
04.3	In Step 2 the reaction mixture from Step 1 is shaken with aqueous sodium carbonate.	outside box
	State the purpose of the sodium carbonate.	
	Suggest a precaution that should be taken while this mixture is shaken in the separating funnel.	
	Give a reason for your suggested precaution. [3 marks]	
	Purpose of sodium carbonate	
	Precaution	
	Reason	
04.4	Give the reason for the use of anhydrous magnesium sulfate in Step 3 . [1 mark]	
04.5	Suggest how the purity of the ester can be confirmed during the distillation in Step 4 . [1 mark]	
		13

		Do not write
0 5	This question is about simple test-tube reactions to identify organic liquids.	outside the box
0 5.1	Silver nitrate solution can be used to distinguish between propanoyl chloride and 1-chloropropane.	
	Give the observations you would expect when a few drops of silver nitrate solution are added to separate samples of propanoyl chloride and 1-chloropropane. [2 marks]	
	Observation with propanoyl chloride	
	Observation with 1-chloropropane	
0 5.2	Three unlabelled bottles are known to contain either propan-1-ol, propanal, or propanone.	
	A sample of each liquid is warmed with a few drops of Fehling's solution.	
	Identify the liquid that reacts with Fehling's solution and give the expected observation.	
	Suggest a further simple test-tube reaction that can be used to distinguish between the remaining two liquids.	
	Give the expected observation with the liquid that reacts. [3 marks]	
	Liquid that reacts with Fehling's solution	
	Observation	
	Further test	
	Observation	

IB/M/Jun24/7405/2

0 6	Compounds V, W, X and Y are isomers with the molecular formula $C_5H_{10}O_2$	Do not write outside the box
06.1	Isomers V and W are carboxylic acids with formulas that can be written as C_4H_9COOH Give an equation for the reaction of C_4H_9COOH with sodium hydrogencarbonate. [1 mark]	
06.2	Isomer V has an asymmetric carbon atom. Deduce the structure of V .	
	[1 mark]	
06.3	Isomer W has four peaks in its ¹ H NMR spectrum. Deduce the structure of W . Deduce the integration ratio for the four peaks in the ¹ H NMR spectrum of W . [2 marks] Structure	
	Integration ratio	

outside the			Do not write
Explain why the peaks in the ¹ H NMR spectrum are singlets. [2 marks] Structure	06.4	Isomer X has three singlets with integration ratio 1:3:6 in its ¹ H NMR spectrum.	outside the
[2 marks] Structure		Deduce the structure of X .	
		Explain why the peaks in the ¹ H NMR spectrum are singlets. [2 marks]	
Explanation		Structure	
Explanation			
Explanation			
		Explanation	
Question 6 continues on the next page		Question 6 continues on the next page	

Table 2 shows information about the peaks in the ${}^{1}H$ NMR spectrum of isomer **Y**.

	Tal	ble 2	
	Chemical shift δ / ppm	Integration ratio	Splitting pattern
	3.65	2	singlet
	1.19	3	singlet
Deduce	e parts of the structure of Y the structure of Y . The structure of Y . The many peaks are in the ¹³ (
Part of s	structure from peak at δ = 3.	65 ppm	
Part of s	structure from peak at δ = 1. e of Y	19 ppm	
Number	r of peaks in ¹³ C NMR spectr	um of Y	

0 6.5

Compound **L** (M_r = 88.0) contains carbon, hydrogen and oxygen only.

19

A 6.56 × 10^{-4} mol sample of **L** burns completely in air to form 2.62 × 10^{-3} mol of water and 2.62 × 10^{-3} mol of carbon dioxide.

Deduce the formula of **L**. Show your working.

[4 marks]

4

0 8	This question is about an organic synthesis.	Do not write outside the box
	$CH_3CH_2CH = CH_2 \xrightarrow{\text{Step 1}} CH_3CH_2CHBrCH_3 \xrightarrow{\text{Step 2}} Compound J$	
	Step 3	
	CH ₃ CH ₂ COCH ₃	
	CH ₃ CH ₂ COCH ₃ ↓ Step 4	
	CH ₃ CH ₂ C(OH)CNCH ₃	
08.1	Name the mechanism in Step 1 .	
	State the reagent(s) used for Step 1. [2 marks]	
	Name of mechanism	
	Reagent(s)	
0 8.2	Identify compound J .	
	State the reagent(s) and conditions needed for Step 2 . [2 marks]	
	Compound J	
	Reagent(s) and conditions	

		Do not write outside the
0 8 . 3	State the reagent(s) used for Step 4 .	box
	Outline the mechanism for Step 4 . [5 marks]	
	Descent(s)	
	Reagent(s)	
	Mechanism	
0 8.4	Explain why Step 4 produces a racemic mixture.	
	[3 marks]	
		12

	side the box
 shape carbon–carbon bond lengths. For each of these properties, suggest reasons for any differences. Use data from Figure 5 in your answer. 	
 carbon–carbon bond lengths. For each of these properties, suggest reasons for any differences. Use data from Figure 5 in your answer. 	
Use data from Figure 5 in your answer.	
[5 marks]	
· · · · · · · · · · · · · · · · · · ·	
Question 10 continues on the part page	
Question 10 continues on the next page	

Turn over 🕨

	Two steps in the synthesis of an aromatic amine are shown.	Do not write outside the box
	CH_3 CH_3 CH_3	207
	$(H_3 \xrightarrow{CH_3} H_3 \xrightarrow{Step 1} (H_3 \xrightarrow{CH_3} H_2 \xrightarrow{CH_3} H_2 \xrightarrow{CH_3} H_2$	
10.2	State the two reagents needed for Step 1 .	
	Give an equation to show the formation of the reactive intermediate from these two reagents. [2 marks]	
	Reagents	
	Equation	
10.3	Outline a mechanism for Step 1. [3 marks]	

	Turn over ►	
	Turn over for the next question	
		12
10.5	State a possible use for the amine formed in Step 2 . [1 mark]	
10.4	State the reagent(s) needed for Step 2. [1 mark]	Do not writ outside the box

This question is about enthalpy of combustion.

1 Limonene is found in the skin of citrus fruits.

Figure 6 shows a diagram of the apparatus used in an experiment to determine a value for the enthalpy of combustion of limonene.

When 1.31 g of limonene are burned, the temperature of the 60.0 g of water in the copper calorimeter increases by 52.1 $^{\circ}\text{C}$

The specific heat capacity of water is 4.18 J $K^{-1}\ g^{-1}$

Figure 6

Calculate a value for the enthalpy of combustion, in kJ mol⁻¹, of limonene ($C_{10}H_{16}$). [4 marks]

kJ mol⁻¹

Enthalpy of combustion

1

1 1

1

9

1 1.2	Table 3 shows values, obtained by different methods, for the enthalpy of combustion of a different liquid hydrocarbon.
	Table 3

	Method	Enthalpy of combustion / kJ mol ⁻¹
1	Standard enthalpy of combustion $\Delta_c H^e_{_{298}}$	-4194
2	Value calculated from a calorimetry experiment	-1100
3	Value calculated using mean bond enthalpies	-3159

Suggest reasons for the differences between the values obtained by each of Methods **2** and **3**, and the value obtained by Method **1** in **Table 3**.

[5 marks]

END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2024 AQA and its licensors. All rights reserved.

