# 

| Please write clearly in block capitals. |                                |  |
|-----------------------------------------|--------------------------------|--|
| Centre number                           | Candidate number               |  |
| Surname                                 |                                |  |
| Forename(s)                             |                                |  |
| Candidate signature                     | I declare this is my own work. |  |

## A-level CHEMISTRY

Paper 1 Inorganic and Physical Chemistry

Monday 10 June 2024

Morning

Time allowed: 2 hours

### Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

### Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 105.









![](_page_1_Picture_1.jpeg)

| 0 1.2 | Tellurium has a relative atomic mass of 127.6                                                                   | Do not write<br>outside the<br>box |
|-------|-----------------------------------------------------------------------------------------------------------------|------------------------------------|
|       | Define relative atomic mass.                                                                                    |                                    |
|       | Suggest <b>one</b> property of tellurium that justifies its position before iodine in the modern Periodic Table |                                    |
|       | [3 marks]                                                                                                       |                                    |
|       | Definition                                                                                                      |                                    |
|       |                                                                                                                 |                                    |
|       | Justification                                                                                                   |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
| 0 1.3 | A sample of tellurium is analysed in a time of flight (TOF) mass spectrometer using electron impact ionisation. |                                    |
|       | Give an equation, including state symbols, for this ionisation. [1 mark]                                        |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
|       | Question 1 continues on the next page                                                                           |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
|       |                                                                                                                 |                                    |
|       | <b>—</b>                                                                                                        |                                    |

![](_page_2_Picture_1.jpeg)

Turn over 🕨

Do not write outside the box

**0 1**. **4** In the TOF mass spectrometer an ion of an isotope of tellurium, with mass number **y**, travels along a 1.25 m flight tube with a kinetic energy of  $1.88 \times 10^{-12}$  J

The ion takes  $3.00 \times 10^{-7}$  s to reach the detector.

$$KE = \frac{1}{2} mv^2$$

KE = kinetic energy / J m = mass / kg v = speed / m s<sup>-1</sup>

Calculate the mass, in g, of 1 mole of these tellurium ions.

Use your answer to suggest the mass number **y** of the tellurium isotope.

The Avogadro constant,  $L = 6.022 \times 10^{23} \text{ mol}^{-1}$ 

[5 marks]

| Mass | a |
|------|---|
|      |   |

Mass number **y** 

![](_page_3_Picture_11.jpeg)

| 0 1.5 | Tellurium has several other isotopes.<br>Two of these isotopes are <sup>126</sup> Te and <sup>124</sup> Te<br>A different sample of tellurium is analysed using a TOF mass spectrometer. |          | Do not write<br>outside the<br>box |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------|
|       | Which statement about kinetic energy ( <i>KE</i> ) is correct?                                                                                                                           | [1 mark] |                                    |
|       | Tick (✓) <b>one</b> box.                                                                                                                                                                 |          |                                    |
|       | The $KE$ of <sup>126</sup> Te <sup>+</sup> is greater than the $KE$ of <sup>124</sup> Te <sup>+</sup>                                                                                    |          |                                    |
|       | The <i>KE</i> of <sup>126</sup> Te <sup>+</sup> is the same as the <i>KE</i> of <sup>124</sup> Te <sup>+</sup>                                                                           |          |                                    |
|       | The <i>KE</i> of $^{126}$ Te <sup>+</sup> is less than the <i>KE</i> of $^{124}$ Te <sup>+</sup>                                                                                         |          | 13                                 |
|       | Turn over for the next question                                                                                                                                                          |          |                                    |

![](_page_4_Picture_1.jpeg)

IB/M/Jun24/7405/1

![](_page_5_Figure_0.jpeg)

![](_page_5_Picture_1.jpeg)

| 02   | This question is about an experiment to determine the solubility of strontium hydroxide in water at 20 $^\circ\mathrm{C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Strontium hydroxide is slightly soluble in water. Strontium hydroxide solution reacts in a similar way to calcium hydroxide solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | <ul> <li>Some solid strontium hydroxide is added to approximately 1 dm<sup>3</sup> of distilled water in a stoppered flask.</li> <li>The mixture is kept at 20 °C. Every day, the mixture is checked. If no solid is present in the flask, more solid strontium hydroxide is added.</li> <li>On the day when no more solid needs to be added, the flask is opened and the mixture is filtered into another flask and stoppered.</li> <li>A 25.0 cm<sup>3</sup> sample of the filtrate is transferred to a conical flask with a pipette and a few drops of indicator added.</li> <li>This sample is titrated with 0.100 mol dm<sup>-3</sup> hydrochloric acid.</li> <li>The titration is repeated several times with further samples of the filtrate. The results are shown in Table 1 on page 8.</li> </ul> |
| 02.1 | Suggest why the solution is kept until no more solid needs to be added. [1 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 02.2 | Suggest why it is important to remove the undissolved strontium hydroxide before the titration.<br>[1 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 02.3 | After the filtration, the solution is stored in a stoppered flask.<br>Suggest a reason for stoppering the flask.<br>[1 mark]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | Question 2 continues on the next page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

![](_page_6_Picture_2.jpeg)

![](_page_7_Figure_0.jpeg)

Give the equation for the reaction between strontium hydroxide and hydrochloric acid.

Use the results in Table 1 to calculate the mean titre.

Use the mean titre to calculate the solubility of strontium hydroxide, in g per 100  $\rm cm^3$  of solution, at 20  $^{\circ}\rm C$ 

[6 marks]

![](_page_7_Picture_5.jpeg)

| Equation                                                            | Do not write<br>outside the<br>box |
|---------------------------------------------------------------------|------------------------------------|
|                                                                     |                                    |
|                                                                     |                                    |
| Mean titrecm³                                                       |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
| Solubility of strontium hydroxideg per 100 cm <sup>3</sup> solution | 10                                 |
|                                                                     |                                    |
| Turn over for the next question                                     |                                    |
|                                                                     |                                    |
|                                                                     |                                    |
| Turn over ►                                                         |                                    |

![](_page_8_Picture_1.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_9_Picture_1.jpeg)

|         |                                                                                                                      | Do not write<br>outside the |
|---------|----------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 0 3     |                                                                                                                      |                             |
|         | When an aqueous $[Fe(H_2O)_6]^{3^+}$ ion reacts with ethanedioate ions, an iron(III) complex ion <b>X</b> is formed. |                             |
|         | The only ligands in <b>X</b> are ethanedioate ions.                                                                  |                             |
|         |                                                                                                                      |                             |
| 0 3 . 1 | Draw the structure of <b>X</b> .                                                                                     |                             |
|         | Include the charge. [2 marks]                                                                                        |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
| 0 3.2   | The formation of <b>X</b> is an example of the chelate effect.                                                       |                             |
|         | Explain the meaning of the chelate effect.                                                                           |                             |
|         | [2 marks]                                                                                                            |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |
|         | Question 3 continues on the next page                                                                                |                             |
|         |                                                                                                                      |                             |
|         |                                                                                                                      |                             |

![](_page_10_Picture_1.jpeg)

|      |                                                                                                                                                                                                                                                                                  | Donot   |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 03.3 | Outline how Fe <sup>2+</sup> ions catalyse the reaction between $S_2O_8^{2-}$ ions and I <sup>-</sup> ions in aqueous solution.                                                                                                                                                  | outside |
|      | In your answer you should include                                                                                                                                                                                                                                                |         |
|      | <ul> <li>a sketch graph to show how the concentration of S<sub>2</sub>O<sub>8</sub><sup>2-</sup> ions changes over time</li> <li>an explanation of how Fe<sup>2+</sup> ions catalyse the reaction, including equations</li> <li>an overall equation for the reaction.</li> </ul> |         |
|      | [6 marks]                                                                                                                                                                                                                                                                        |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |
|      |                                                                                                                                                                                                                                                                                  |         |

![](_page_11_Picture_1.jpeg)

![](_page_12_Picture_0.jpeg)

![](_page_12_Picture_1.jpeg)

Turn over ►

| 0 3.4   | A student adds dilute ammonia solution to a solution containing [Fe(H <sub>2</sub> O                       | ) <sub>6</sub> ] <sup>2+</sup> ions. |
|---------|------------------------------------------------------------------------------------------------------------|--------------------------------------|
|         | Give the formula of the precipitate that forms.                                                            | [1 mark]                             |
|         |                                                                                                            | [1.1.2.1.4]                          |
|         |                                                                                                            |                                      |
| 0 3 . 5 | The student adds sodium carbonate solution to a solution containing $[Fe(H_2O)_6]^{2+}$ ions.              |                                      |
|         | State <b>one</b> observation the student would make.                                                       |                                      |
|         | Give an equation for the reaction.                                                                         | [2 marks]                            |
|         | Observation                                                                                                |                                      |
|         | Equation                                                                                                   |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
| ) 3.6   | A solution containing $[Fe(H_2O)_6]^{2+}$ ions changes to a yellow-brown colour hours in contact with air. | after several                        |
|         | The student adds sodium carbonate to the yellow-brown solution.                                            |                                      |
|         | Give an equation for the reaction with sodium carbonate.                                                   | [1 mark]                             |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |
|         |                                                                                                            |                                      |

Do not u

|      |                                                                                                                                                                                                             | Do not write       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 0 4  | This question is about some gas mixtures at equilibrium.                                                                                                                                                    | outside the<br>box |
|      | This reaction can be used to make hydrogen.                                                                                                                                                                 |                    |
|      | $H_2O(g) + CO(g) \rightleftharpoons H_2(g) + CO_2(g)$ $\Delta H = -41 \text{ kJ mol}^{-1}$                                                                                                                  |                    |
| 04.1 | A mixture of 2.00 mol of $H_2O(g)$ and 2.00 mol of $CO(g)$ is allowed to reach equilibrium at a constant temperature in a 20 dm <sup>3</sup> container.<br>At equilibrium, there are 0.92 mol of $H_2(g)$ . |                    |
|      | Calculate the mole fraction of $H_2(g)$ in the equilibrium mixture. [2 marks]                                                                                                                               |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      | Mole fraction of H <sub>2</sub> (g)                                                                                                                                                                         |                    |
| 04.2 | State why the equilibrium constant ( $K_p$ ) for this reaction has no units. [1 mark]                                                                                                                       |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      | Question 4 continues on the next nage                                                                                                                                                                       |                    |
|      | Question 4 continues on the next page                                                                                                                                                                       |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |
|      |                                                                                                                                                                                                             |                    |

![](_page_14_Picture_1.jpeg)

IB/M/Jun24/7405/1

![](_page_15_Figure_0.jpeg)

Ethanol can be made from ethene and steam.

 $C_2H_4(g) + H_2O(g) \rightleftharpoons CH_3CH_2OH(g) \qquad \Delta H = -45 \text{ kJ mol}^{-1}$ 

**Table 2** shows the mole fractions of each of the gases in an equilibrium mixture at 6000 kPa

| Table | 2 |
|-------|---|
| Iable | 4 |

| Gas     | Mole fraction |
|---------|---------------|
| Ethene  | 0.645         |
| Steam   | 0.323         |
| Ethanol | 0.0321        |

![](_page_15_Picture_6.jpeg)

16

| 04.4 | Give an expression for $K_p$ for this reaction.                                           | Do not write<br>outside the<br>box |
|------|-------------------------------------------------------------------------------------------|------------------------------------|
|      | Calculate the value of $K_p$ at 6000 kPa                                                  |                                    |
|      | State the units.                                                                          |                                    |
|      | [4 marks]                                                                                 |                                    |
|      | Κ <sub>p</sub>                                                                            |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      | Units                                                                                     |                                    |
| 045  | State the effect if any of an increase in volume of the container on the volue of $K$ for |                                    |
|      | this reaction at a constant temperature.                                                  |                                    |
|      |                                                                                           | []                                 |
|      |                                                                                           | 9                                  |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      | Turn over for the next question                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      |                                                                                           |                                    |
|      | Turn over ►                                                                               |                                    |

![](_page_16_Picture_1.jpeg)

| 0 5   | This question is about chlorine.                                                                                                                                                                                                                                                                                                                                              |           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 0 5.1 | Give an equation to show how chlorine forms an acidic solution in water.                                                                                                                                                                                                                                                                                                      | [1 mark]  |
| 0 5.2 | Give an equation for the reaction between chlorine and cold, dilute aqueous sodium hydroxide.                                                                                                                                                                                                                                                                                 | [1 mark]  |
| 05.3  | In acidic conditions, $ClO_3^-$ ions oxidise $Cl^-$ ions to form $Cl_2$<br>Deduce a half-equation for the oxidation of $Cl^-$ to $Cl_2$<br>Deduce a half-equation for the reduction of $ClO_3^-$ to $Cl_2$<br>Deduce the overall equation for this reaction.<br>Half-equation for the oxidation of $Cl^-$ to $Cl_2$<br>Half-equation for the reduction of $ClO_3^-$ to $Cl_2$ | [3 marks] |
|       | Overall equation                                                                                                                                                                                                                                                                                                                                                              |           |

![](_page_17_Picture_2.jpeg)

| 0 5.4 | Give the equation for the reaction of solid sodium chloride with                                                 | Do not write<br>outside the<br>box |
|-------|------------------------------------------------------------------------------------------------------------------|------------------------------------|
|       | concentrated sulfuric acid.                                                                                      |                                    |
|       | State the role of the chloride ions in this reaction. [2 marks]                                                  |                                    |
|       | Equation                                                                                                         |                                    |
|       |                                                                                                                  |                                    |
|       | Role                                                                                                             |                                    |
| 0 5.5 | Draw the shape of the $Cl_3^-$ ion.<br>Include any lone pairs of electrons that influence the shape.<br>[1 mark] |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |
| 0 5.6 | Chlorine forms an ion with the Group 3 element thallium (Tl).                                                    |                                    |
|       | State and explain the bond angle in $TlCl_2^+$                                                                   |                                    |
|       | [2 marks]                                                                                                        |                                    |
|       |                                                                                                                  |                                    |
|       | Explanation                                                                                                      |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  | 10                                 |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |
|       |                                                                                                                  |                                    |

![](_page_18_Picture_1.jpeg)

This question is about vanadium ions.

 Table 3 shows some standard electrode potential values.

#### Table 3

|                                                                     | <i>E</i> ° / V |
|---------------------------------------------------------------------|----------------|
| $O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(I)$                  | +1.23          |
| $VO_2^+(aq) + 2H^+(aq) + e^- \rightarrow VO^{2+}(aq) + H_2O(I)$     | +1.00          |
| $VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightarrow V^{3+}(aq) + H_2O(I)$ | +0.34          |
| $V^{3+}(aq)$ + $e^- \rightarrow V^{2+}(aq)$                         | -0.26          |
| $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$                            | -0.44          |
| $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$                            | -0.76          |
| $V^{2+}(aq) + 2e^- \rightarrow V(s)$                                | -1.20          |
| $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$                            | -2.38          |

0 6.1

06

Use the data in **Table 3** to explain why Zn reduces an aqueous solution of  $VO_2^+$  ions to  $V^{2+}$  ions, but does not reduce it any further.

[2 marks]

**0 6**. **2** Identify the species in Table 3 that can reduce an aqueous solution of  $VO_2^+$  to V [1 mark]

![](_page_19_Picture_9.jpeg)

|         |                                                                                    | Do not wr<br>outside th |
|---------|------------------------------------------------------------------------------------|-------------------------|
| 0 6 . 3 | Two half-cells $Fe^{2+}(aq) / Fe(s)$ and $VO^{2+}(aq) / V^{3+}(aq)$ are connected. | box                     |
|         | Calculate the EMF of this cell.                                                    |                         |
|         | Give the conventional representation for this cell.                                |                         |
|         | Give a half-equation for the reaction that occurs at the negative electrode.       | amarks]                 |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         | EMF                                                                                |                         |
|         | Cell representation                                                                |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         | Half-equation                                                                      |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         | Question 6 continues on the next page                                              |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         |                                                                                    |                         |
|         | Tur                                                                                | n over ►                |

![](_page_20_Picture_1.jpeg)

Do not write outside the box

**0 6 . 4** 0.151 g of impure  $NH_4VO_3$  is added to dilute sulfuric acid to form a solution containing aqueous  $VO_2^+$  ions.

All the  $VO_3^-$  ions are converted to  $VO_2^+$  ions.

These  $VO_2^+$  ions are reduced to aqueous  $V^{2+}$  ions by reaction with an excess of zinc.

 $2VO_2^+(aq) + 8H^+(aq) + 3Zn(s) \rightarrow 3Zn^{2+}(aq) + 2V^{2+}(aq) + 4H_2O(l)$ 

The excess of zinc is removed by filtration and washed.

The filtrate, containing the V<sup>2+</sup> ions, is titrated with a 0.0200 mol dm<sup>-3</sup> solution of acidified KMnO<sub>4</sub>

29.43 cm<sup>3</sup> of KMnO<sub>4</sub> solution are needed to oxidise all the V<sup>2+</sup> ions to VO<sub>2</sub><sup>+</sup> ions.

The ionic equation for the reaction of MnO<sub>4</sub><sup>-</sup> ions with V<sup>2+</sup> ions is

 $3 \text{MnO}_{4^{-}}(aq) + 5 \text{V}^{2+}(aq) + 4 \text{H}^{+}(aq) \rightarrow 2 \text{H}_{2}\text{O}(I) + 3 \text{Mn}^{2+}(aq) + 5 \text{VO}_{2^{+}}(aq)$ 

Calculate the percentage purity of the NH<sub>4</sub>VO<sub>3</sub> Give your answer to 3 significant figures.

[4 marks]

Percentage purity

![](_page_21_Picture_13.jpeg)

| 0 7   | At 40 °C the ionic product of water, $K_w = 2.92 \times 10^{-14} \text{ mol}^2 \text{ dm}^{-6}$                                                                                                                                | Do not write<br>outside the<br>box |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 0 7.1 | Give the expression for $K_w$                                                                                                                                                                                                  |                                    |
|       | Calculate the pH of pure water at 40 °C<br>Give your answer to 2 decimal places.<br>[3 marks]                                                                                                                                  |                                    |
|       | K <sub>w</sub>                                                                                                                                                                                                                 |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       | pH                                                                                                                                                                                                                             |                                    |
| 0 7.2 | 35.0 cm <sup>3</sup> of 0.150 mol dm <sup>-3</sup> aqueous sodium hydroxide are mixed with 20.0 cm <sup>3</sup> of a 0.100 mol dm <sup>-3</sup> solution of hydrochloric acid. The temperature of the solution formed is 40 °C |                                    |
|       | Calculate the pH of the solution formed.<br>Give your answer to 2 decimal places.<br>[5 marks]                                                                                                                                 |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       |                                                                                                                                                                                                                                |                                    |
|       | ۳H                                                                                                                                                                                                                             | 8                                  |
|       | ۲۱۱                                                                                                                                                                                                                            |                                    |

![](_page_22_Picture_1.jpeg)

| 08   | This question is about enthalpy changes.                                                                                          | Do not<br>outside<br>box |
|------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 08.1 | Theoretical values for enthalpies of lattice dissociation can be calculated using a perfect ionic model.                          |                          |
|      | State the meaning of the term perfect ionic model. [1 mark]                                                                       |                          |
|      |                                                                                                                                   |                          |
| 08.2 | Enthalpies of lattice dissociation can also be obtained from Born–Haber cycles.                                                   |                          |
|      | Figure 3 shows an incomplete Born–Haber cycle for the formation of sodium oxide.                                                  |                          |
|      | Figure 3                                                                                                                          |                          |
|      | $2 \text{Na}^+(g) + O^{2-}(g)$                                                                                                    |                          |
|      | $2 \operatorname{Na}(g) + O(g)$                                                                                                   |                          |
|      | 2 Na(s) + O(g)                                                                                                                    |                          |
|      |                                                                                                                                   |                          |
|      | Na <sub>2</sub> O(s)                                                                                                              |                          |
|      | Complete <b>Figure 3</b> by writing formulas, including state symbols, of the appropriate species on each of the two blank lines. |                          |

![](_page_23_Picture_1.jpeg)

**08. 3 Table 4** shows some enthalpy changes.

Table 4

|      |           | Enthalpy change                                            | Δ <i>H</i> / kJ mol <sup>−1</sup> |                      |
|------|-----------|------------------------------------------------------------|-----------------------------------|----------------------|
|      |           | Enthalpy of atomisation of oxygen                          | +248                              |                      |
|      |           | Enthalpy of atomisation of sodium                          | +109                              |                      |
|      |           | Enthalpy of formation of sodium oxide                      | -416                              |                      |
|      |           | First ionisation energy of sodium                          | +494                              |                      |
|      |           | First electron affinity of oxygen                          | -142                              |                      |
|      |           | Second electron affinity of oxygen                         | +844                              |                      |
|      | Use the o | data in <b>Table 4</b> to calculate the enthalpy of oxide. | lattice dissociation of           | [2 marks]            |
|      |           | Enthalpy of lattice dissociation                           |                                   | kJ mol <sup>_1</sup> |
| 08.4 | Explain v | vhy the second electron affinity of oxygen h               | nas a positive value.             | [1 mark]             |
|      |           | Question 8 continues on the next                           | page                              |                      |

![](_page_24_Picture_4.jpeg)

Turn over ►

[2 marks]

 0
 8
 . 6
 Sodium chloride dissolves in water.

 Table 5 shows some more enthalpy changes.
 Table 5

 Table 5

 Enthalpy change
 ΔH / kJ mol<sup>-1</sup>

 Enthalpy of hydration for Cl<sup>-</sup> ions
 -364

 Enthalpy of hydration for Na<sup>+</sup> ions
 -406

Enthalpy of lattice dissociation for NaCl

Use the data in **Table 5** to calculate the enthalpy of solution for sodium chloride. [2 marks]

Enthalpy of solution \_\_\_\_\_ kJ mol<sup>-1</sup>

+771

![](_page_25_Picture_4.jpeg)

0 8 . 5

enthalpy of lattice dissociation for sodium chloride.

Explain why the enthalpy of lattice dissociation for sodium oxide is greater than the

![](_page_26_Figure_0.jpeg)

![](_page_26_Picture_1.jpeg)

IB/M/Jun24/7405/1

| 09   | This question is about metals and their compounds.                                     |          | Do no<br>outsi<br>b |
|------|----------------------------------------------------------------------------------------|----------|---------------------|
| 09.1 | State why the atomic radius of calcium is greater than the atomic radius of magnesium. | [1 mark] |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
| 09.2 | Magnesium reacts with steam.                                                           |          |                     |
|      | Give an equation, including state symbols, for this reaction.                          | [1 mark] |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |
|      |                                                                                        |          |                     |

|      |                                                                                                                                                                      | <b>D</b>                           |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 09.3 | Similar-sized pieces of barium and magnesium are added to separate 100 cm <sup>3</sup> samples of dilute sulfuric acid. In each case the sulfuric acid is in excess. | Do not write<br>outside the<br>box |
|      | The barium reacts quickly at first. After a few minutes the reaction stops, even though there is still some unreacted barium in the flask.                           |                                    |
|      | The magnesium reacts more slowly than the barium, but the reaction continues until all the magnesium has reacted.                                                    |                                    |
|      | Explain why                                                                                                                                                          |                                    |
|      | <ul> <li>the barium initially reacts more quickly than the magnesium</li> <li>the barium reaction stops before all the barium has reacted.</li> </ul>                |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      | Question 9 continues on the next page                                                                                                                                |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |
|      |                                                                                                                                                                      |                                    |

![](_page_28_Picture_1.jpeg)

 $2 X(NO_3)_2(s) \rightarrow 2 XO(s) + 4 NO_2(g) + O_2(g)$ 

A 0.832 g sample of  $\bm{X}(NO_3)_2$  decomposes on heating to produce a total of 348  $cm^3$  of gas at 298 K and 100 kPa

Deduce the identity of metal X.

The ideal gas constant,  $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ 

[6 marks]

Do not write outside the

box

Identity of metal X

![](_page_29_Picture_7.jpeg)

| 09.5 | Sodium reacts with aluminium and hydrogen to form solid NaAlH <sub>4</sub>                                             | Do<br>out |
|------|------------------------------------------------------------------------------------------------------------------------|-----------|
|      | Give an equation for this reaction.                                                                                    |           |
|      | Suggest why NaAlH₄ has a high melting point.                                                                           | 3 marks1  |
|      | Equation                                                                                                               |           |
|      | Suggestion                                                                                                             |           |
| 09.6 | Give the equation for the reaction between $H_3 \mbox{PO}_4$ and an excess of NaOH                                     | [1 mark]  |
|      | Lithium is an important metal used in cells to power mobile phones.                                                    |           |
| 09.7 | In a lithium cell, a lithium cobalt oxide electrode and a lithium electrode are u                                      | sed.      |
|      | Give the equation for the reaction that occurs at the positive electrode.                                              | [1 mark]  |
| 09.8 | Commercial electrochemical cells can be rechargeable or non-rechargeable.<br>State why lithium cells can be recharged. | [1 mark]  |
|      |                                                                                                                        |           |
|      | END OF QUESTIONS                                                                                                       |           |

![](_page_30_Picture_1.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_31_Picture_1.jpeg)

| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |

![](_page_32_Picture_2.jpeg)

| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |

![](_page_33_Picture_2.jpeg)

| Question<br>number | Additional page, if required.<br>Write the question numbers in the left-hand margin. |
|--------------------|--------------------------------------------------------------------------------------|
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |
|                    |                                                                                      |

![](_page_34_Picture_2.jpeg)

![](_page_35_Figure_0.jpeg)

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 AQA and its licensors. All rights reserved.

![](_page_35_Picture_3.jpeg)

![](_page_35_Picture_4.jpeg)