

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level CHEMISTRY

Paper 3

Friday 21 June 2024

Morning

Time allowed: 2 hours

Materials

For this paper you must have:

- the Periodic Table/Data Booklet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend 70 minutes on **Section A** and 50 minutes on **Section B**.

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
Section B	
TOTAL	

		Do not w outside
	Section A	box
	Answer all questions in this section.	
0 1	The structure of 2-hydroxybenzenecarboxylic acid is shown.	
	СООН	
	OH	
0 1.1	Give the equation for the reaction of 2-hydroxybenzenecarboxylic acid with methanol.	
	In your equation, include the skeletal formula of the organic product. [2 marks]	
	Aspirin is produced from 2-hydroxybenzenecarboxylic acid by reaction with ethanoic anhydride in the presence of concentrated phosphoric acid. Method	
	 Add 2-hydroxybenzenecarboxylic acid to a conical flask. Add excess ethanoic anhydride. Add a few drops of concentrated phosphoric acid. 	
	 4. Heat the flask to 85 °C for 10 minutes. 5. Cool the flask and pour the contents into 150 cm³ of cold water. 6. Filter and wash the impure solid aspirin. 7. Recrystallise the aspirin using a 50:50 mixture of water and ethanol. 	
	8. Check the purity of the aspirin.	
01.2	Aspirin can also be produced by reacting 2-hydroxybenzenecarboxylic acid with ethanoyl chloride.	
	State why ethanoic anhydride is preferred to ethanoyl chloride for this preparation. [1 mark]	

purify the aspirin.
[6 marks]

Do not write outside the box

19

01.9	State the physical property that is measured to check the purity of the aspirin. Describe two ways the result would show that the product is impure. [3 marks] Physical property111

Turn over ►

Do not write outside the box The rate of reaction between calcium carbonate and hydrochloric acid is investigated

Method

0 2

- Place a conical flask on a balance and add approximately 20 g of large marble chips.
- Add 50 cm³ of 0.4 mol dm⁻³ hydrochloric acid.
- Place a loose cotton wool plug in the neck of the flask.
- Zero the mass reading on the balance. •

using a continuous monitoring method.

- Start a timer.
- Record the loss in mass (m_t) every 30 seconds for 4 minutes. •
- Wait for the reaction to finish and record the total mass loss (m_{total}).
- Plot a graph of $(m_{\text{total}} m_{\text{t}})$ against time.

Figure 1 shows a graph of the results obtained during the first 240 s

02.2	20 g of large marble chips is a large excess of calcium carbonate.	Do not write outside the box
	Suggest why using a large excess of calcium carbonate means that the rate is only affected by the changing concentration of the hydrochloric acid. [1 mark]	
02.3	The mass of carbon dioxide produced in time t is equal to $m_{\rm t}$.	
	The total mass of CO ₂ produced during the reaction is equal to m_{total} .	
	Explain why $(m_{\text{total}} - m_{\text{t}})$ is proportional to the concentration of hydrochloric acid remaining in the flask at time <i>t</i> .	
	[2 marks]	
	Question 2 continues on the next page	

Turn over ►

02. 4 Table 1 shows the rate of reaction, calculated from the gradient of the curve, at five different times.

 $(m_{\text{total}} - m_{\text{t}})$ is proportional to the concentration of unreacted HCl at time *t*.

Table 1

Rate of reaction / g s ⁻¹	23.0 × 10 ⁻⁴	19.0 × 10 ⁻⁴	15.7 × 10 ⁻⁴	11.5 × 10 ⁻⁴	6.67 × 10 ⁻⁴
$(m_{\text{total}} - m_{\text{t}})$ / g	0.340	0.280	0.225	0.170	0.100

On the grid in **Figure 2** plot the rate of reaction (*y*-axis) against $(m_{total} - m_t)$ (*x*-axis). [3 marks]

Figure 2

Do not write outside the

0 2 5	State how the graph in Figure 2 confirms that the rate equation for this reaction is	Do not write outside the box
	Rate = k[HCl] [1 mark]	
02.6	In this experiment the variable measured is mass loss.	
	The rate of this reaction at a constant temperature can be investigated in other ways.	
	Suggest two other variables that can be measured instead of mass loss.	
	[2 marks]	
	1	
	2	11
	Turn over for the next question	
	Turn over ►	

		CH ₂ =0	CHCH2CH2OH -	\rightarrow CH ₂ =CHCH ₃ +	HCHO	
	The results temperature		stigation are use	ed to calculate the	rate constant,	<i>k</i> , at each
	Table 2 sho	ows some of t	he results.			
			Table 2	2		
		<i>Τ</i> / Κ	$\frac{1}{T}$ / K ⁻¹	<i>k</i> / s ⁻¹	In <i>k</i>	
		553	1.81 × 10 ^{−3}	4.6 × 10 ⁻⁴	-7.68	
		563	1.78 × 10 ⁻³	8.4 × 10 ⁻⁴	-7.08	
		573		15.6 × 10 ⁻⁴		
		583	1.72 × 10 ⁻³	28.0 × 10 ⁻⁴	-5.88	
		593	1.69 × 10 ⁻³	49.9 × 10 ⁻⁴	-5.30	
2	the column	headings in 1	Table 2.	leduced from a pie		[1 mark] tion in one of
	Identify this	piece of infor	mation and dedu	uce the overall ord	ler.	[2 marks]
		ormation				
	Piece of info					
		ər				
		er				
		ər				
		er				

03.4	Use your graph from Question 03.3 to calculate a value for E_a , in kJ mol ⁻¹ , for the thermal decomposition of but-3-en-1-ol.	Do not write outside the box
	The gas constant, <i>R</i> = 8.31 J K ⁻¹ mol ⁻¹ [3 marks]	
	<i>E</i> _a kJ mol ⁻¹	
03.5	2-Methylpent-4-en-2-ol decomposes in a similar way to but-3-en-1-ol, to produce an alkene and a carbonyl compound.	
	Deduce the structures of the alkene and the carbonyl compound. [2 marks]	
	$CH_2=CHCH_2C(CH_3)_2OH \rightarrow _$ +	
	alkene carbonyl compound	10

04.3	Give an expression for K_a for propanoic acid (CH ₃ CH ₂ COOH).	
	Use this expression to show that $pH = pK_a$ when half of the propanoic acid har reacted with sodium hydroxide.	
		[3 marks]
	K _a	
04.4	Use the pH from Figure 4 , when half of the propanoic acid has reacted, to ca K_a at 298 K	
		[2 marks]
	<i>K</i> a	mol dm ⁻³
	Question 4 continues on the next page	

Do not write outside the box

04.5	When sodium hydroxide solution is added to aqueous propanoic acid, the solution formed acts as a buffer when between 5 cm ³ and 15 cm ³ have been added.
	Explain why the pH stays approximately constant during this part of the experiment. [2 marks]
04.6	Methyl orange and universal indicator are not suitable indicators for the titration of solutions of propanoic acid with sodium hydroxide.
	State the reason why each indicator is not suitable. [2 marks]
	Methyl orange
	Universal indicator

		Do not write outside the
0 5 . 1	Some complexes containing transition metal ions are coloured.	box
	• Explain why some complexes containing transition metal ions are coloured.	
	List the factors that affect the colour.Describe how colorimetry can be used to determine the concentration of a	
	coloured complex. [6 marks]	

Section B	
Answer all questions in this section.	
Only one answer per question is allowed. For each question completely fill in the circle alongside the appropriate answer. CORRECT METHOD • WRONG METHODS • • • • • • • • • • • • • • • • • • •	wish to select
0 6 Which row contains two species with different numbers of electrons?	[1 mark]
A NH ₃ and HF \bigcirc	
B CO_3^{2-} and NO_3^{-}	
C H_3O^+ and HF_2^+	
D CH_4 and NH_2^-	
0 7 Which element has the highest third ionisation energy?	[1 mark]
A Li	
B Be	
СК	
D Ca	
	Turn over ►

Turn over ►

12	Which molecule does not have a permanent dipole? [1 mark]	Do not write outside the box
	A NH ₃	
	B PCl ₃	
	C SCl ₂	
	D SiCl ₄	
13	Which compound forms the greatest number of hydrogen bonds per molecule in the liquid state? [1 mark]	1
	A CH ₃ CH ₂ COOH	
	B CH ₃ CH ₂ OCH ₃	
	C CH ₃ CH ₂ CHO	
	D CH ₃ CH ₂ CH ₂ OH	

1 8	Values of the ionic product of water (K_w) at different temperatures are giv	en.
	K _w = 6.40 × 10 ^{−15} mol ² dm ^{−6} at 18 °C K _w = 1.00 × 10 ^{−14} mol ² dm ^{−6} at 25 °C	
	Which statement is correct?	[1 mark]
		[]
	A The concentration of hydroxide ions in water at 18 °C is 8.00×10^{-8} mol dm ⁻³	0
	B The dissociation of water into ions is an exothermic process.	0
	C The pH of water is the same at 25 $^\circ$ C and at 18 $^\circ$ C	0
	D Water becomes less acidic as the temperature is raised.	0
1 9	Consider the Period 3 elements from sodium to chlorine.	
	Which statement is correct?	
	which statement is conect?	[1 mark]
	A Sodium has the smallest atomic radius.	
	B Aluminium has the highest melting point.	
	C Sulfur is the most electronegative.	
	D Chlorine has the highest first ionisation energy.	
2 0	Which statement correctly describes a trend down Group 7 from Cl to I?	
	X represents Cl, Br or I	
		[1 mark]
	A The boiling point of HX increases.	0
	B The bond dissociation energy of H–X increases.	0
	C The standard electrode potential value for $X_2(aq) + 2e^- \rightarrow 2X^-(aq)$	0
	becomes more positive.	

2 7	What is the product when 3-methylbutan-2-one reacts with acidified KCN?		Do not write outside the box
		[1 mark]	
	A 2-hydroxy-2,3-dimethylbutanenitrile		
	B 3-hydroxy-2,3-dimethylbutanenitrile		
	C 2-hydroxy-3-methylpentanenitrile		
	D 3-hydroxy-2-methylpentanenitrile		
2 8	Which statement concerning nylon-6,6 is correct?	[1 mark]	
	A Butanedioic acid is one of the reactants used to make nylon-6,6	0	
	B Nylon-6,6 is an addition polymer.	0	
	C Nylon-6,6 can be hydrolysed by aqueous sodium hydroxide.	0	
	D All molecules of nylon-6,6 have the same relative molecular mass.	0	
29	Which statement about the industrial production of ethanol from ethene at 30 correct?	00 °C is	
	$C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$ $\Delta H = -46 \text{ kJ mol}^{-1}$	[1 mark]	
	A The use of an acid catalyst increases the yield of ethanol.	0	
	B The reaction is slower than fermentation.	0	
	c An increase in temperature, at constant pressure, increases the value of $K_{\rm p}$.	0	
	An increase in pressure, at constant temperature, increases the equilibrium yield of ethanol.	0	

Turn over ►

30	Which compound is formed by the acid hydrolysis of phenyl benzenecarb	ooxylate? [1 mark]	Do not write outside the box
	A C ₆ H ₅ CH ₂ OH		
	B C ₆ H₅CHO ⊡		
	D C ₆ H ₅ COOH		
3 1	Which type of polymer is most difficult to hydrolyse?	[1 mark]	
	A polyalkene		
	B polyamide		
	C polyester		
	D protein		
32	In which polymer does hydrogen bonding occur between the polymer cha	ains? [1 mark]	
	A a polyalkene		
	B a polyamide		
	C a polychloroalkene		
	D a polyester		

Do not write outside the box

Turn over ►

34

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

40

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.

Copyright © 2024 AQA and its licensors. All rights reserved.

