
 
 

   

 NEA task 2 specimen solution v1.0 
  

 

Potential enhancements and refinements 
The solution meets user requirements, allowing the user to play the game and guess the random 
number correctly.  The user input has been validated to ensure that the solution is robust. The 
validation includes the use of a try: catch when checking the format of the data input.  This prevents 
the program from crashing if the input is not a number, so the user has an opportunity to re-enter the 
number, rather than restarting the program. 

The code has comments that explain the functions and is structured logically, so making an efficient 
solution that can be easily maintained. 

The main problem encountered was how the user input was handled and there are some 
alternatives that can be considered. In my solution I originally used the input() function. When I 
tested the solution this caused a problem when validating the input.  

The python function input() reads the keyboard input and makes a decision on how to format the 
data based on what the user has typed.  For example if the user types in a number such as 1234 
then input() will set the data variable to an integer (so in this case user_input is an integer if 1234 is 
entered). 

 

 

 

The advantage of using input() is that python makes a decision without needing code to test if the 
number is an integer or a string.  Code is shorter and less complex. When comparing the randomly 
generated number in my example the code will be comparing “like with like”, as the random number 
returns an integer. This could have performance benefits as there is no need for extra instructions to 
the processor to convert data types. 

This would be fine if I was comparing the random and user input numbers as a whole.  However I 
needed to compare them digit by digit and an integer data type does not allow this.  There are a few 
ways to do this in python but all involve converting the user input into a string and then mapping into 
a list. This would make the code more complex and less efficient as data would have to be 
evaluated twice and potentially converted twice.   

Therefore I used the raw_input function that always assumes a string input. This could then be 
tested once to see if it was an integer, for validation.  It could then be compared digit by digit to the 
randomly generated number that had been formatted as a list originally. 

An Improvement to the functionality of the solution could be considered.  For example it could be 
possible to save a game half way through, so that the user could resume guessing the number.  
This would require a way of saving the random number and number of guesses into some data 
store.  

A history of games could also be created, and a way of entering user names and playing against 
another user, to compare guesses. 

This was not required as part of this solution however. 

83




